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ABSTRACT 

This paper describes a method for melody detection in 
polyphonic musical signals. Our approach starts by ob-
taining a set of pitch candidates for each time frame, 
with recourse to an auditory model. Trajectories of the 
most salient pitches are then constructed. Next, note 
candidates are obtained by trajectory segmentation (in 
terms of frequency and pitch salience variations). Too 
short, low-salience and harmonically-related notes are 
then eliminated. Finally, the notes comprising the mel-
ody are extracted.  Comparing to our previous work, we 
extend it by making use of melodic smoothness for the 
definition of the final melody notes. We tested our 
method with excerpts from 21 songs encompassing sev-
eral genres and obtained an average detection accuracy 
of 82%. Melody smoothing was responsible for an im-
provement of 11.8% in the overall accuracy. 

1. INTRODUCTION 

Query-by-humming (QBH) is a particularly intuitive 
way of searching for a musical piece, since melody 
humming is a natural habit of humans. This is an impor-
tant research topic in an emergent and promising field 
called Music Information Retrieval (MIR). Several tech-
niques have been proposed in order to attain that goal in 
the MIDI domain, e.g., [1]. However, querying “real-
world” polyphonic recorded musical pieces requires the 
analysis of polyphonic musical waveforms. This is a 
rather complex task since many types of instruments can 
be playing at the same time, with severe spectral inter-
ference between each other.  

Previous work concerned with obtaining symbolic 
representations from musical audio has concentrated 
especially on the problem of full music transcription, 
which requires accurate multi-pitch estimation for the 
extraction of all fundamental frequencies present in a 
song under analysis, e.g., [5]. However, the present solu-
tions are neither sufficiently general nor accurate, often 
imposing several constraints on the music material.  

Only little work has been carried out in the particular 
problem of melody detection in “real-world” songs, e.g., 
[3, 4, 6, 8]. Additionally, most of the work is only con-
cerned with the extraction of melodic pitch lines, rather 
than melody notes.  

In our approach we put the focus on the melody, no 
matter what other sources are present. Thus, we base our 
strategy in two main assumptions that we designate as 
the “salience principle” and the “melodic smoothness 
principle”. By the salience principle, we assume that the 

notes comprising the melody are, in general, salient in 
the mixture. As for the melodic smoothness principle, 
we exploit the fact that note frequency intervals tend, 
generally, to be small.  

2. MELODY DETECTION SYSTEM 

Our melody detection algorithm comprises five stages, 
as illustrated in Figure 1. The general strategy was de-
scribed previously, e.g., [8]. New improvements to the 
melody extraction stage are described in more detail. 
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Figure 1. Melody detection system overview. 

In the Multi-Pitch Detection (MPD) stage, the objec-
tive is to capture a set of pitch candidates, which consti-
tute the basis of possible future notes. We perform pitch 
detection in a frame-based analysis, defining a 46.44 ms 
frame length and a hop size of 5.8 ms, based on an audi-
tory model proposed by Slaney and Lyon [9]. For each 
obtained pitch, a pitch salience is computed, which is 
approximately equal to the energy of the corresponding 
fundamental frequency. 

Multi-Pitch Trajectory Construction (MPTC), in the 
second stage, aims to create a set of pitch tracks, formed 
by connecting consecutive pitch candidates with similar 
frequency values. To this end, we based ourselves on the 
algorithm proposed by Serra [10].  

Each trajectory from the MPTC stage may contain 
more than one note and, therefore, segmentation of 
tracks must be conducted in the third stage. This is car-
ried out in two phases: frequency segmentation, aiming 
to separate notes with different MIDI values, and sali-
ence segmentation with the objective of dividing con-
secutive notes at the same MIDI note number.  

In the fourth stage, irrelevant note candidates are 
eliminated, based on their saliences, durations and on 
the analysis of harmonic relations. We make use of per-
ceptual rules of sound organization, namely “harmonic-
ity” and “common fate” [2], where common frequency 
and amplitude modulation are exploited.  



  

 
In the last stage, our goal is to obtain a final set of 

notes comprising the melody of the song under analysis. 
In fact, although a significant amount of irrelevant notes 
is eliminated in the previous stage, there are still many 
notes present. Therefore, we have to determine which 
are the ones that convey the main melodic line. This is 
the core topic of this paper and is described in the fol-
lowing section. 

3. EXTRACTION OF MELODY NOTES 

The definition of the notes comprising the melody of a 
song under analysis, being probably the most important 
task of any melody detection algorithm, is also the most 
difficult one to carry out. In fact, many aspects of audi-
tory organization influence the perception of melody by 
humans, for instance in terms of the role played by pitch, 
timbre and intensity content of the sound signal.  

In our approach, we do not tackle the problem of 
source separation. Instead, we base our strategy on the 
assumptions that i) the main melodic line often stands 
out in the mixture (salience principle) and that ii) melo-
dies are usually smooth in terms of the note frequency 
intervals, which tend to be small (melodic smoothness 
principle). 

3.1. Selecting the Most Salient Notes 

In the first step of the melody extraction stage, we select 
the most salient notes at each time as initial melody can-
didates. The criteria used for comparing the salience be-
tween notes as well as algorithmic details were described 
previously, e.g., [8]. In the implemented algorithm, some 
of the selected notes were truncated, since melody notes 
are not allowed to overlap in time. 

The results of melody extraction after selecting the 
most salient notes are illustrated in Figure 3, for an ex-
cerpt from Pachelbel’s Kanon. There, the correct notes 
are depicted in gray and the black continuous lines de-
note the obtained melody notes. The dashed lines stand 
for the notes that result from the note elimination stage. 
We can see that some erroneous notes are extracted, 
whereas true melody notes are excluded. Namely, some 
octave errors occur.  
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Figure 3. Extraction of the most salient notes for 
an excerpt from “Pachelbel’s Kanon”. 

 
In fact, one of the limitations of only taking into con-

sideration note saliences is that the notes comprising the 

melody are not always the most salient ones. In this 
situation, wrong notes may be selected as belonging to 
the melody, whereas true notes are left out. This is par-
ticularly clear when abrupt transitions between notes are 
found, as can be seen in Figure 3. Hence, we improved 
our method by smoothing the melody contour. 

3.2. Exploiting Melodic Smoothness 

As referred above, abrupt transitions between notes give 
strong evidence that wrong notes were selected. In fact, 
small frequency transitions favor melody coherence, 
since smaller steps in pitch hang together better [2]. In 
an attempt to demonstrate that musicians generally pre-
fer to use smaller note steps, the psychologist Otto Ort-
mann counted the number of sequential intervals in sev-
eral songs by classical composers, having found that the 
smallest ones occur more frequently and that their re-
spective number roughly decreases in inverse proportion 
to the size of the interval [2]. So being, we improved the 
melody extraction stage by taking advantage of this me-
lodic smoothness principle. 

We started to improve the initial melody by perform-
ing octave correction. In fact, in the note elimination 
stage not all harmonically-related notes are eliminated 
and, thus, some octave errors occur when sub or super-
harmonic notes are more salient than the right notes. In 
order to correct octave errors, we select all notes for 
which no octaves (either above or below) are found and 
compute their average MIDI values. Then, we analyze 
all notes that have octaves with common onsets: if the 
octave is closer to the computed average, the original 
note is replaced by the corresponding octave. This sim-
ple first step already improves the final melody signifi-
cantly. However, some octave errors, as well as abrupt 
transitions, are still kept, which will be worked out in the 
following stages. 

In the second step, we analyze the obtained notes and 
look for regions of smoothness, i.e., regions where there 
are no abrupt transitions between consecutive notes. 
Here, we define a transition as being abrupt if the inter-
vals between consecutive notes are above a fifth, i.e., 
seven semitones, as illustrated in Figure 4. There, the 
bold notes (a1, a2 and a3) are marked as abrupt. In the 
same example, four initial regions of smoothness are 
detected (R1, R2, R3 and R4).  
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Figure 4. Regions of smoothness. 
 
Then, we select the longest region as a correct region 

(region R3, in Figure 4, filled in gray) and define the 
allowed note range for its adjacent regions (R2 and R4).  



  

 
Regarding the left region, we define its allowed range 

based on the first note of the correct region, e.g., MIDI 
value 70 in this example. Keeping in mind the impor-
tance of the perfect fifth, the allowed range for the left 
region is 70 ± 7, i.e., [63, 77]. As region R2 contains no 
note in the allowed range, this region is a candidate for 
elimination. However, before deletion, we first check if 
each of its notes contains an octave in the allowed range. 
If so, the corresponding notes are substituted by the 
found octaves. If at least one octave is found, no note is 
deleted in this iteration. On the contrary, if no octave is 
found, all the notes are eliminated.  

For the right region we proceed likewise. Hence, we 
define the allowed range based on the last note of the 
correct region, e.g., 69 in this example, resulting the 
range [62, 76]. Since region R4 contains notes in the 
allowed range, its first note, i.e., note a3, is marked as 
non-abrupt. However, we still look for an octave of the 
referred note in the allowed range. In case it is found, 
the abrupt note is substituted, as before. 

In short words, regions that correspond to sudden 
movements to different registers are interpreted as being 
incoherent and are, consequently, eliminated. However, 
abrupt transitions are allowed if adjacent regions are 
both coherent in melodic terms, as happens in Figure 4 
for regions R3 and R4. This situation occurs in some mu-
sical pieces as, for example, Pachelbel’s Kanon, as can 
be seen in Figures 3 and 5. 

If no notes are substituted/deleted for the current re-
gion, the following regions are analyzed in the same 
way, in descending length order. If no change at all is 
performed for all regions, the algorithm stops. Other-
wise, whenever a change is performed, the procedure for 
definition of regions of smoothness, analysis of 
neighbors and deletion/substitution is repeated until no 
change is done. In the successive iterations, regions of 
smoothness are defined taking into consideration notes 
previously marked as non-abrupt, e.g., the notes in re-
gion R4 in the above descriptions. Thus, in a following 
iteration, regions R3 and R4 will not be divided. 
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Figure. 5. Extracted melody for an excerpt from 
“Pachelbel’s Kanon”. 

Finally, since some regions are eliminated, their notes 
need to be substituted by other notes that are more likely 
to belong to the melody, according to the smoothness 
principle. Thus, we fill each gap in the melody with the 
most salient note candidates that are in the allowed 
range for that region. 

The results of the implemented procedures are illus-
trated in Figure 5, for the same excerpt from Pachelbel’s 
Kanon. We can see that only one erroneous note resulted 
(signaled by an ellipse), which corresponds to an octave 
error. This example is particularly challenging to our 
melody-smoothing algorithm due to the periodic abrupt 
transitions present. Yet, the performance was very good. 

4. EXPERIMENTAL RESULTS 

We evaluated the proposed algorithms with a database 
generated for the Melody Extraction Contest (MEC-04) 
as part of the ISMIR 2004 Audio Description Contest 
[7] and a test-bed we had previously created [8].  

For accuracy computation, the detected melody notes 
were compared with the correct notes. Then, we used the 
pitched accuracy metric defined in [7], with some adap-
tations. Namely, the target frequency values for each 
time frame were defined as the reference frequencies of 
the corresponding MIDI values. In the same way, the 
extracted frequencies were defined from the reference 
frequencies corresponding to the extracted melody 
notes. The accuracy was calculated as the percentage of 
correctly identified frames. In the original metric defined 
in [7], exact frequency values were used, which seem 
more relevant in a problem of predominant-pitch detec-
tion, rather than in our melody detection problem. 
 Four evaluations were performed: i) using only note 
saliences, without the allowance of octave errors (Sa); ii) 
only note saliences, permitting octave errors (Sa+Oc); 
iii) note saliences and melodic smoothness (Sm); and iv) 
note saliences and melodic smoothness, with the allow-
ance of octave errors (Sm+Oc). From these, we are natu-
rally more interested in the Sm evaluation. 

The obtained results are summarized in Table 1, 
where the top 11 lines correspond to our test-bed and the 
next 10 refer to the MEC-04 database. 

We can see that good results were achieved for the 
Sm evaluation. There, an average accuracy of 82% was 
attained. Also, in several excerpts the system achieved 
almost 100% accuracy. Without melody smoothing, the 
average accuracy was 70.2% (Sa evaluation) and so our 
implementation of the melodic smoothness principle 
amounts for an average improvement of 11.8%.  

As for the MEC-04 database, the results were also 
good, except for the opera excerpts. These samples seem 
to pose additional difficulties to the pitch detection algo-
rithm, in the first stage of our system. We plan to ad-
dress this issue in the near future. 

Another interesting fact is that the proposed approach 
is almost immune to octave errors, as can be seen by 
comparing the Sm and Sm+Oc columns in Table 1: their 
average accuracy differs by only 1.1%.  

5. CONCLUSIONS 

We propose a system for melody detection in poly-
phonic musical signals. This is a main issue for MIR 
applications, such as QBH in “real-world” music data-



  

 

Song Title Genre Sa Sa+Oc Sm Sm+Oc 

Pachelbel’s Kanon Classical 59.3 85.1 89.5 96.0 
Handel’s Hallelujah Choral 60.1 68.1 81.4 83.2 
Enya - Only Time Neo-Classical 82.7 82.7 89.4 89.4 
Dido - Thank You Pop 94.3 94.3 94.3 94.3 
Ricky Martin - Private Emotion Pop 69.0 79.8 80.4 80.4 
Avril Lavigne - Complicated Pop / Rock 58.2 77.7 92.8 92.8 
Claudio Roditi - Rua Dona Margarida Jazz / Easy 89.0 98.3 98.3 98.3 
Mambo Kings - Bella Maria de Mi Alma Bolero 88.2 88.2 91.3 91.3 
Compay Segundo - Chan Chan Son Cubano 70.6 78.5 70.6 78.5 
Juan Luis Guerra - Palomita Blanca Bachata 71.5 71.5 80.2 80.2 
Battlefield Band - Snow on the Hills Scottish Folk 46.4 85.8 94.6 94.6 
daisy2 Synthesized singing voice 85.1 86.6 88.1 88.1 
daisy3 Synthesized singing voice 66.4 71.1 78.3 78.3 
jazz2 Saxophone phrases 62.0 68.1 70.6 70.6 
jazz3 Saxophone phrases 75.8 79.1 86.1 86.1 
midi1 MIDI synthesized 69.8 86.0 80.9 87.8 
midi2 MIDI synthesized 97.6 97.6 97.6 97.6 
opera_fem2 Opera singing 47.9 59.0 64.5 64.5 
opera_male3 Opera singing 40.5 46.7 45.1 45.1 
pop1 Pop singing 63.7 64.4 70.3 70.3 
pop4 Pop singing 75.7 77.0 77.6 77.6 

Average accuracy 70.2 78.4 82.0 83.1 

Table 1. Results of the melody detection system. 

bases. The work conducted in this field is presently re-
stricted to the MIDI domain, and so we guess we make 
an interesting contribution to the area, with some en-
couraging results. Furthermore, we explicitly define mu-
sical notes, with precise onsets and offsets, something 
that is not addressed in most approaches for melody 
detection. Regarding future work, we plan to further 
work out some of the described limitations, as well as 
addressing the problem of false positive notes.  
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